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General representation theory

1 Basic concepts

Let G be an arbitrary finite group' and let K be an arbitrary field. Then
a (linear) representation p of G over K is a homomorphism
p: G- GL(V)

where V is a finite dimensional vector space’ over K and GL(V) is the
group of nonsingular linear transformations of V into itself. If we are
already given the vector space V, then we may refer to p as a representation
of G on V. Although we shall normally write mappings on the right, we
shall write p(g) rather than gp since we shall never consider compositions
of representations; also, for veV, we shall write vg for v-p(g) if there is no
risk of ambiguity.

If the dimension of V is n, we may choose a basis for V and identify
V with the space K" of n-tuples over K; then we may regard p as a map
from G into GL(n, K), the group of nonsingular n x n matrices over K.
The precise map so obtained depends on the choice of basis; thus a
homomorphism

p:G—->GL(n,K)

should be called a matrix representation. However, in a way which will
be made precise shortly, matrix representations obtained by taking
different bases are similar, and we shall move freely between represen-
tations on vector spaces and the corresponding matrix representations.

We shall study representations with two particular purposes in mind.
The first is that a representation gives us something concrete, namely a
group of linear transformations or matrices, to which the methods of linear
algebra may be applied. The second is that by studying the values of the
traces of the matrices p(g), it may be possible to use the arithmetic
properties of the field K to deduce information about an abstract group
G. This is known as character theory, and much of this book will be de-
voted to this aspect in the case that K is the field of complex numbers C.

* Throughout this book, groups will always be finite, with the obvious exception of groups
of linear transformations, and vector spaces will be finite dimensional. However, most of
the definitions of this section, although little of the subsequent theory, can be extended
without these restrictions.



2 General representation theory

Such trace values are known as (ordinary) characters. However, in this
chapter we shall develop the basic representation theory in the first

spirit and in a form more general than that needed purely for character
theory.

Examples (Groups and fields are arbitrary unless otherwise stated.)
1. Let V be a one-dimensional vector space over K. The map

g—1y

for all geG is the trivial representation of G over K.

2. Let G be a group which acts as a group of permutations on a finite
set Q, where Q= {e,,...,e,}. Let V be a vector space of dimension n over
K with a basis {v;,...,v,}. For geG, let n, be the linear transformation
on V defined by the action on basis vectors

n,iv;—~v; if and only if g:e;—e;.
Then the map 7n:G— GL(V) defined by n(g)=mn, for all geG is a
permutation representation of G on V. Notice that the corresponding

matrix representation (with respect to the basis {v,,...,v,}) is given by
permutation matrices.

3. Take Q=G in Example 2 and define a permutation action by the
mappings

g: x> Xxg
for all x,geG. The associated representation is called the right regular
representation of G.

4. Let N be a normal subgroup of G, and suppose that p is a representation
of G/N. The mapping

P9 plgN)
for all geG defines a representation on G. This representation is called
the inflation of p.
Conversely, if ¢ is a representation of G such that N lies in the kernel
of g, then the mapping

6:gN — o(g)
defines a representation of G/N.
5. If K is regarded as a one-dimensional vector space over itself, then
multiplication acts as a linear transformation. Thus any homomorphism

from a group G into the multiplicative group of K may be viewed as a
representation. In particular, if p is a representation of G over K, then
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the mapping

g —det(p(g))
for all geG is a one-dimensional representation.

6. Let G be a cyclic group of order n and let g be a generator of G. Let
 be an nth root of unity in K (not necessarily primitive). Then the mapping

Poig =
defines a representation of G. Conversely, every one-dimensional re-
presentation of G is similar to a representation of this form.

7. The alternating groups A, and A5 and the symmetric group S, are
isomorphic, respectively, to the rotation groups of the regular tetrahedron,
icosahedron and cube. By taking an orthonormal basis for R?, these
isomorphisms lead to natural representations of the three groups by real
orthogonal 3 x 3 matrices.

We shall now introduce some basic terminology. Let G and K be, as before,
arbitrary and let p be a representation of G on a vector space V over K.
The dimension dimg(V) is called the degree of the representation p and
will be denoted by deg p. If the kernel, ker p, of p is trivial, then p is
faithful. If U is a subspace of V which is invariant under p(g) for all gegG,
then U admits G, or is G-invariant. If V #0 and the only G-invariant
subspaces of V are 0 and V itself, then p is irreducible; otherwise p is
reducible. If V can be written as the direct sum of two nonzero G-invariant
subspaces, then p is decomposable; otherwise p is indecomposable.

It follows, trivially, that an irreducible representation is indecomposable.
The converse is true provided that the characteristic of K does not divide'
the order of G as we shall see in Section 3, but this need not be so in
general. For example, a two-dimensional representation of the additive
group of Z, over Z,, is given by

(o 1)
t— s
0 1

and this is indecomposable but not irreducible: the subspace spanned by
the second basis vector is invariant, but not complemented.

Suppose that p, and p, are two representations of G over K on vector
spaces V, and V, respectively. Then p; and p, are said to be equivalent
if there exists an isomorphism a: V; — V, such that

pal9)=0""p,(g)o for all geG;
we shall write p, ~ p,, or p; ~¢p, if we wish to emphasise the field K.

*This will always be understood to include the case that char K =0.
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Visibly, this defines an equivalence relation on the representations of a
group (over a fixed field), and by a set of distinct representations of a
group, we shall always mean a collection of inequivalent representations.

If V,=7V,, then this definition can be applied to two different
representations of G on Vy; also, if p is a representation of G on V and p,
and p, are the associated matrix representations with respect to different
bases of V, then immediately p, and p, are equivalent. In this case, there
exists a nonsingular matrix X such that

pa(g)=X""p,(g)X
for all geG, and we say that p, and p, are similar.

Exercises

1. Show that the derived group G’ of a group G lies in the kernel of
any representation of G of degree 1. Deduce that, if p: G - GL(n, K)
is a matrix representation of G, then p(g)eSL (n, K) whenever geG'.

2. Letp, and p, be equivalent representations of a group G. Show that,
whenever geG, the linear transformations p,(g) and p,(g) have the
same minimal and characteristic polynomials. If g is an element of
order n, show that the minimal polynomial of p,(g) divides x" — 1.

3. Let p be a representation of a group G over an algebraically closed
field K whose characteristic does not divide |G|. If g is a fixed element
of G, show that there exists a basis with respect to which p(g) has a
diagonal matrix.

4. Let G be a finite abelian group and let K be an algebraically closed
field of characteristic not dividing |G|. If G has a representation on
a vector space V over K, show that there exists a basis for V with
respect to which every element of G is represented by a diagonal
matrix. Deduce that every irreducible representation of G over K
has degree 1.

5. Let G and K be as in Exercise 4 and regard the irreducible
representations as maps from G to K. Suppose that G has a
decomposition as the direct product of cyclic subgroups generated
by elements g, ,...,g,. Show that an irreducible representation p of
G is determined by its values on the elements g, , ..., g, alone. Deduce
that the number of distinct irreducible representations of G over K
is | G|.

Show that the set of distinct irreducible representations forms an
abelian group G* under composition defined by

(P1p2)(g) = p1(9) palg) for all geG,
and that G* is isomorphic (as an abstract group) to G.
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6.

Show that an irreducible representation of a cyclic group G of
prime order p over a field of characteristic p is trivial. By considering
the possible Jordan canonical forms for a linear transformation of
order p, determine a complete set of inequivalent indecomposable
representations of G over a field of characteristic p.

Determine the irreducible representations of an arbitrary p-group
over a finite field K of characteristic p.

[Hint. Show that the subgroup of upper triangular matrices in
GL(n,K) is a Sylow subgroup, where n is the degree, and apply
Sylow’s theorem.]

Let G be the dihedral group D,,, of order 2n, the group of symmetries
of a regular n-gon. Then G has a presentation

G={xyx"=y’=1y 'xy=x").
Suppose that n is odd. Show that G’ = (x>, and hence determine the
(two) one-dimensional representations of G over C.
Use Exercises 1 and 4 to show that, if p:G->GL(2,C) is a
two-dimensional irreducible complex representation of G, then p ~ p,

where
w 0
X} =
p1{x) <0 w_1>

and w is a nonidentity nth root of unity. Determine which matrices
of order 2 can invert p,(x), and hence show that p, ~p, where

0 1
p1(x)=py(x) and Pz()’):(l 0>'

Deduce that the number of inequivalent irreducible complex
representations of G of degree 2 is 3(n — 1).
[Notice that 1(n — 1)-2? + 2-1% = 2n: see Exercise 17 of Section 2 and
also Corollary 20 (iii).]
Carry out the corresponding analysis to Exercise 8 when n is even.
[Note that, in this case, G’ = (x?}.]
Let G be the generalised quaternion group of order 2"* ! (n > 2) which
has a presentation

9=yl =1Ly =x¥"y ixy=x"1).
Show that there is a complex representation p:G—GL(2,C) for

which
w 0 0 —1
p(X)—<0 w_1> and p(y)=<1 0)

where w is a primitive 2"th root of unity and that p is faithful and
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irreducible. Show also that every element of G is represented by a
matrix in SL(2,C), and deduce directly that G contains a unique
involution (element of order 2).

In Example 7, use geometrical considerations to show that the
representations defined there are irreducible.

Let G be a group, and define an action of G as a group of permutations
on itself by g: x > g~ 'x. Show that this gives rise to a representation
over any field, called the left regular representation.

Show that, if p and ¢ are similar matrix representations of a group
G over a field K, then tr(p(g)) = tr(o(g)) for all geG.

Show also that tr(p(g)) = tr (p(h)) whenever g and h are conjugate

elements in G. (This says that we have defined a class function on G.)
[tr denotes the trace of matrix: if A =(a;;), then trd =73 ;a;.
For each of the groups A4,, A5 and S, determine the value of tr(p(g))
for a representative of each conjugacy class, where p is the three-
dimensional real representation defined for each of the three groups
in Example 7.

2 Group rings, algebras and modules

Let G be a finite group and let p be a representation of G on a vector
space V over a field K. Then the K-linear combinations of the linear
transformations p(g) for ge G form a subring of the full ring £ (V) of linear
transformations of V. The vector space V' can be given the structure of a
right module over this subring. We shall formalise this, but make our first
definition more general.

Let G be a group and let R be a commutative ring with identity. Then

the group ring RG consists of the set of all formal sums

Za (a,eR)

geG

together with the binary operations

Yag+ Y bg= Z (a,+b)g (a,b,eR)

geG geG

(o)) (e )

= Y (g,b)(gh)

g.heG

where gh is the group product in G. It is a straightforward calculation to
verfiy that RG is an associative ring with identity. If R is a field K, then
KG has the structure of a vector space over K as well as that of ring. So
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in this case KG is a K-algebra of finite dimension |G|, called the group
algebra of G over K.

Let p: G— GL(V) be a representation of G on a vector space V' over the
field K. Then we can extend p by linearity to a K-algebra homomorphism

p: KG—-Homg(V, V).

The extension p is a representation of the algebra KG. This gives V the
structure of a unitary right KG-module under the operation

03 a,9) =2 a,(v'p(g)),

called the representation module. Since dimy (V) is finite, V certainly satisfies
both chain conditions as a KG-module; the composition factors (or the
representations that they afford—see Propositions 1 and 2 below) are called
the irreducible constituents of p. Conversely, given a unitary right
KG-module M which is finite dimensional as a vector space over K, we
may obtain a representation ¢ of G defined by m-a(g)=mg. In our
approach, we shall switch freely between modules and representations.

These considerations extend naturally to the representations (over K)
of an arbitrary K-algebra A*. Conversely, given an 4-module M, we may
recover a representation of A. It is easy to see that the definitions of
Section 1 extend to representations of K-algebras (over K) and then to
verify the following.

Proposition 1. Let G be a group and K a field. Then a representation of G
over K is irreducible or indecomposable if and only if the same is true of
the corresponding representation of KG. Two representations of G are
equivalent if and only if the same is true for the corresponding representations
of KG.

Proposition 2. Let A be an algebra over a field K and let M be an A-module
which affords a representation p of A. Then

(i) M is irreducible as an A-module if and only if p is an irreducible
representation,
(i) M is indecomposable as an A-module if and only if p is an indecom-
posable representation, and
(i) fM=M,®---@®M, is a direct sum decomposition of M into a sum
of indecomposable submodules, then n and the isomorphism classes
of M,,...,M, are uniquely determined.

' Algebras will always be associative with identity and finite dimensional. Modules will be
unitary right modules unless explicitly stated otherwise, and modules over algebras will
be finite dimensional over the underlying field.
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Furthermore, if N is an A-module affording a representation o, then p and
o are equivalent if and only if M and N are isomorphic as A-modules.

Proof. All but (iii) are immediate from the definitions. We note that M
always has such a decomposition since it satisfies both chain conditions
on submodules: then the Krull-Schmidt theorem holds.

We shall now consider some constructions of representations that will be
used later, leaving the necessary verifications as exercises.

Examples

L If p:G—>GL(V) is a representation of G and H is a subgroup of G,
then the restriction ply:H—GL(V) is a representation of H. Since
KH < KG, a KG-module M has the structure of a KH-module, which we
denote by My,

2. If M, and M, are KG-modules affording representations p, and p,
respectively, then their direct sum M, @ M, affords the sum p, + p,.

3. Let M be a KG-module affording a representation p, and let M* be
the dual of M as a vector space over K. Then M* may be given the
structure of a KG-module as follows. For m*e M* and geG, define

m*g = plg™")om*;
then m*ge M* and we put
m*(Y).a,9) =Y a,(m*g).
M* affords the contragredient representation p*: as matrix representations

with respect to dual bases, p*(g) will be the transpose inverse of p(g) for
each geG.

4. Let p: G > GL(n, K) be a matrix representation, and suppose that a is an
automorphism of K. If p(g) =(a;;(g)), then a representation p* can be
defined by putting p*(g) = ((4;;(g))*). An example of particular importance
occurs when K = C and o is complex conjugation.

5. Let p be a representation of a group G and let § be an automorphism
of G. Then the map g — p(g6) defines a representation of G. (This is Just
the composite of § and p.) Notice that this action of 6 on sets of
representations preserves equivalence.

6. Let G and H be groups and let M and N be KG- and KH-modules
respectively affording representations p and ¢ of G and H. Let M ® N be
the tensor product of M and N as vector spaces. Then M ® N can be
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given the structure of a K(G x H)-module by defining
(m®n)(g, h) = mg nh

for decomposable tensors and extending by linearity. M ® N affords the
tensor product representation p® o of G x H.

7. Take G =H in Example 6 above and restrict p® o to the diagonal
subgroup of G x G. Then M ® N affords a representation p ® ¢ of G, also
called the tensor product, under the operation

(m®n)g = mg ® ng.

8. Let M be an A-module, where A is a K-algebra, and suppose that L
is an extension of K. Put A" = L®yA4 and ML = L® M. Then A* may
be regarded as an L-algebra and M" as an A“-module under the operation
(leom('®a)=1ll' ®ma.

Notice that dim, (M%) = dimg(M). In the case of group algebras, there is
a natural isomorphism between (KG)* and LG. Regarding M* as an
LG-module and letting M and M?® afford representations p and p* of G
respectively, the corresponding matrix representations of G will be identical
with respect to bases of the form {m;} and {1 ® m;}. Thus, by abuse of
terminology, p ~ p* and characteristic and minimal polynomials are
unaltered by field extension. Usually we shall follow this abuse and refer
to extending the ground field, rather than actually perform the tensor
product construction since this is what happens in reality when considering
representations of groups and embedding GL(n, K) in GL(n, L).

If p is an irreducible representation of G over K, then p is absolutely
irreducible if p" is irreducible whenever L is an extension of K, and K is
a splitting field for G if every irreducible representation of G over K is
absolutely irreducible. As will be seen in Exercise 12, any extension of a
splitting field is a splitting field: no ‘new’ irreducible representations occur
in a larger field. These definitions extend to algebras and modules provided
the precise formulation is taken.

We shall return to the study of absolute irreducibility in Section 4.

Exercises
1. If Gis agroup and N is a normal elementary abelian p-subgroup of
G, show that N may be given the structure of a Z,(G/N)-module by
defining
(mgN =g~ 'ng
for all neN and geG. What is the kernel of the corresponding
representation of G?



10

11.

12.

General representation theory

Show that, if G is a group and M and N are normal subgroups of

G with N« M and M/N an elementary abelian p-group, then M/N

may be given the structure of a Z,G-module.

Show that if H is a subgroup of a group G and M and M’ are

K G-modules, then (MM )y = M;EMy and MM )y = MyuQM,,.

Show also that (M*), =(My)*.

Show that the module given by a permutation representation of a

group always contains a submodule affording the trivial representa-

tion.

Show that a group ring KG, viewed as a module over itself, has a

unique submodule affording the trivial representation, spanned (as

a vector space) by Y g.

Show that a group ring KG affords the right regular representation

of G when viewed as a right module over itself. What can be said of

KG as a left module?

Let H be a normal subgroup of a group G and let K be a field. Show

that KH can be given the structure of a KG-module by defining
h-g=g 'hg

and extending linearly.

Let A be a K-algebra. Show that, as a module over itself, the

submodules of A are precisely the right ideals of A.

Let A be a K-algebra and let M be an irreducible 4-module. Show

that A has a maximal right ideal B such that 4/B=M as an

A-module. Deduce that A has only finitely many inequivalent

irreducible representations.

Let A be a K-algebra. Show that the intersection of all maximal right

ideals forms a two-sided ideal J(A), called the radical of A4, and that

J(A) = {aeA|Ma =0 for every irreducible 4-module M}.

Show also that J(A/J(A))=0.

Let M be an irreducible KG-module where char K divides |G|. For
meM, show that, if m(}_ g) # 0, then m(}_ g) spans a subspace on which
G acts trivially. Deduce that, in fact, m(} g)=0 and hence that
J(KG) #0.

Let 4 be a K-algebra and let M be an A-module. Suppose that L is
an extension of K. Show that

(i) if N is an A-submodule of M, then N* may be regarded as an
Al-submodule of ML and ML/NL ~(M/N)-,
(i) if E is an extension of L, then ME ~ (M%), and
(iiiy if M is absolutely irreducible, then so is M~.
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13.

14.

1s.

1e.

17.

Suppose that K is a splitting field for 4 and that {M,...,M,} is
a complete set of nonisomorphic irreducible A-modules. If M is an
irreducible A“-module, show that M=~ MiL for some i and deduce
that L is also a splitting field for A.
[Note. This is also a consequence of theorems that will be proved
later, but it is instructive to find an elementary proof. It will also
follow from the structure theorems that no two of M%,...,MF are
isomorphic. See Theorem 13 and Exercise 8 of Section 4.]
Let p be a representation of a group G over a field K, where char K
does not divide |G|. Show that there exists a finite extension L of K
such that p is similar over L to a representation in which any specified
element g may be represented by a diagonal matrix. What restriction
need be imposed to obtain a like conclusion if char K does divide | G|?
Let G be an abelian group of exponent n. Show that if K is a field
whose characteristic does not divide |G| and K contains primitive
nth roots of unity, then K is a splitting field for G. Show that if the
second condition is not satisfied, then K is not a splitting field.
[See Exercises 4 and 5 of Section 1. The exponent of a group is the
least common multiple of the orders of its elements. ]
Let G a group and H a subgroup, and let K be a field. Show that,
if {gy,...,ga} is @ set of coset representatives for H in G, then the
subspace of KG spanned by the coset sums

Z hg, i=1,...,n,

heH

forms a submodule.

Determine the irreducible constituents of the right regular
representation of the symmetric group S, over each of the fields
C,Q,7,, and Z; and deduce that each is a splitting field for S;.

Let G=D,, and suppose that n is odd. Using the notation of
Exercise 8 of Section 1, show that, if @ is a nonidentity nth root of
unity, the complex group algebra CG has a two-dimensional subspace
on which x acts as multiplication by « in the right regular
representation. By considering the action of y on the four-dimensional
subspace spanned by the eigenspaces of x corresponding to
eigenvalues w and w ™ *, show that CG has at least two composition
factors affording the representation p,. Deduce, by considering the
sum of their dimensions, that CG has exactly one composition factor
affording each one-dimensional representation and exactly two
composition factors affording each two-dimensional irreducible
representation.
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[Note. Compare this with the previous exercise. Exercise 17 now
shows that every irreducible representation of G over C has been
described. See also Corollary 20(ii).]

Obtain the analogue of the previous exercise with n even.

Show that 4 has two inequivalent real representations of degree 3.
[Hint. Consider the effect of conjugation by a 4-cycle in S5 on a
S-cycle that it normalises, and trace values. See Example 7 and
Exercise 14 of Section 1.]

Let M and N be A-modules for a K-algebra A. Show that
Hom(M, N) can be given the structure of an A-module by defining

m(fa)=(mf)a
for me M, feHomyg (M, N) and ae A, where Homg (M, N} denotes the
vector space of linear transformations from M to N.
Let M and N be KG-modules. Show that Homg (M, N) can be given
the structure of a KG-module by defining a map f? by
mfi=(mg~'f)g
for all me M and extending by linearity. Show that the space of fixed
points of the action of G on Homg (M, N) is Homg;(M, N), the set
of homomorphisms from M to N as KG-modules.
Let K be an arbitrary field. Show that any n x n matrix over K can
be expressed as a finite K-linear combination of nonsingular matrices
over K.
[In this sense, there exists a homomorphism from the group ring of
GL(n, K) over K, taking only finitely many nonzero terms, onto the
full matrix ring 4 ,(K).]}
Let M be an A-module and define the symmetric and antisymmetric
subspaces of M ® M as the subspaces Mg and M, spanned by
the sets {(m@m|meM} and {(m, ®m, —m,@m,;)|m,, meM} res-
pectively. Show that Mg and M, are submodules and that
MM=M;®M, if char K #2.

3 Complete reducibility

Let K be an arbitrary field and let A be a K-algebra. An A-module M is
said to be completely reducible if the conditions of the following proposition
hold. The representation of 4 afforded by M will also be said to be
completely reducible.

Proposition 3. Let M be an A-module. Then the following three conditions
are equivalent.
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(i) M is a direct sum of irreducible submodules.
(i) M is a sum of irreducible submodules.
(ili) Every submodule of M is a direct summand.

Proof. Clearly (i) implies (ii). If (ii) holds, we establish (iii) by induction
on codimension. Let N be a submodule of M. If N = M, there is nothing
to prove; otherwise, by (ii), there exists an irreducible submodule L of M
such that LW N =0. Then N + .= N@® L and, by induction, there exists
a submodule L' of M such that

M=(N®OL®L=N®LDL).
If (iii) holds, let {M,..., M,} be a collection of irreducible submodules
of M which generate their direct sum M’. If M’ # M, then we can choose

a submodule M” of M and an irreducible submodule M, ., of M” such
that M = M'® M" and

M@ OM)+M,, =M, @ OM,OM,, oM, ®--®M,.

Since M is finite dimensional over K, it follows that M is a direct sum of
irreducible submodules.

For the remainder of this section, we shall restrict our attention to
representations of group algebras. The next result will provide a
fundamental dichotomy according to the characteristic of the underlying
field.

Theorem 4 (Maschke). Let G be a finite group and let K be a field whose
characteristic does not divide |G|. Then every KG-module is completely
reducible.

Proof. Suppose that M is a reducible KG-module and let U be a proper,
nonzero submodule. Then we must show that U is a direct summand of
M. Let V be a complement to U in M, viewed only as a vector space,
and let 8: M — V be the corresponding projection. We apply an averaging
process to find a KG-invariant complement to U.

Define a map ¢: M —» M by the formula

mo=|G|™' Y ((mg)0)g~";

geG

clearly ¢ is K-linear. Put W = M. Then M = U + W since, if meM,

m—me=|G|™" ) (mg—(mg)f)g~'eU.

geG
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Also, if heG,
(me)h=1G|™1 Y. ((mg))g *h

geG

=[G|"' Y ((mh(g™'h)~")0)g ™'k

geG

=G| ). ((mhx)B)x~*
xeG
= (mh)o
where we put x = (¢~ 'h)” . So W is G-invariant. Now ¢|, = 0 since 8], = 0.
Hence, as ¢ is K-linear,

dimy (U) + dimg (W) < dimg (M),
and so M =U@® W as a KG-module.

If the characteristic of K does divide |G|, then KG is not completely
reducible; we shall leave a proof to the exercises below. After the general
considerations of this chapter, we shall be restricting our attention to
the ordinary representation theory of finite groups—namely, that over the
complex field, or at least a splitting field of characteristic zero. Here, the
complete reducibility of the group algebra will be crucial in developing
the basic formulae on which character theory will depend. Analogous
results for other fields whose characteristic does not divide the group
order hold, but are of limited interest. If the characteristic of the field does
divide the group order, then one speaks of modular representation theory
as was first fully explored by Brauer after earlier work by Dickson. In
particular, Brauer developed an extensive theory on the connection
between ordinary and modular representations. (Strictly speaking,
modular representation theory refers to the situation for fields of nonzero
characteristic but, as remarked above, in the coprime characteristic case,
this is the same as the ordinary theory.)

Exercises

1. Show that every submodule and factor module of a completely
reducible module is completely reducible. Show also that the
intersection of all maximal submodules of a completely reducible
module is the zero submodule. Deduce that if K is a field whose
characteristic divides the order of a group G, then KG is not
completely reducible as a K G-module. (See Exercise 11 of Section 2).
[Note. This shows that the conclusion of Maschke’s theorem would
be false if the hypothesis about the field characteristic were omitted.
See also Exercise 6.]
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2.

10.

Show that any KG-module has a unique submodule maximal with
respect to admitting G trivially.

Let A be a K-algebra and let M be an A-module. Define the socle
soc(M) to be the sum of all the irreducible submodules of M and
the radical rad (M) to be the intersection of all maximal sub-
modules of M. Prove that soc(M) and M/rad(M) are completely
reducible.

Let A be a K-algebra and let B be a right ideal of A. Prove that A/B
is completely reducible as an A-module if and only if B2 J(A).
[See Exercise 10 of Section 2.]

Show that the set of elements 3" a,g in a group algebra KG for which
> a, =0 forms an ideal A(KG), called the augmentation ideal. Show
also that KG/A(KG) is isomorphic to the trivial KG-module.

Show that, if char K divides |G|, then A(KG) contains the unique
trivial submodule of KG. Deduce that, in this case, KG has at least
two trivial constituents as a KG-module.

[Note. KG contains a unique trivial submodule by Exercise 5 of
Section 2.]

Verify directly that the group algebra of the symmetric group Sj is
completely reducible for the fields C and Q, but not Z, or Z;.
[Use the computations from Exercise 16 of Section 2.]

Let A be a K-algebra and let M be an A-module. Identify
Homg (M, M) with the full matrix algebra .#,(K) where n = dim (M)
and let A act on ./ ,(K) via the formula m(f a) = (mf)a. By considering
the submodules consisting of matrices with nonzero entries only in
a single row, show that Homg (M, M) is isomorphic as an 4-module
to a direct sum of n copies of M. Deduce that, if M is irreducible,
then Homg (M, M) is completely reducible.

Let R be an arbitrary ring. Show that the equivalence of the three
statements in Proposition 3 holds for R-modules, with no
requirement of a finiteness condition (in that case, finite
dimensionality).

Let P be an elementary abelian p-group and let H be a p'-group
which acts on P. By viewing P as a Z,H-module, prove that
P=Cp(H)x [P,H].

[A p'-group is a group of order not divisible by a prime p.]

4 Absolute irreducibility and the realisation of representations

We begin by studying an irreducible module M for a K-algebra A and
its endomorphism ring Hom ,(M, M). Our initial goal will be to determine
a criterion for M to be absolutely irreducible, namely that only the scalar
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transformations commute with the action of 4. Then we will specialise to
the study of group rings and their splitting fields in characteristic 0. The
approach that we take is via the double centraliser lemma (Theorem 7);
this will in fact yield the full structure of the irreducible representations
as a consequence, and we shall obtain this in the next section.

In the following result, we shall identify the field K with the space of
scalar transformations: we shall often do this without further comment.
The first part is known as Schur’s lemma.

Theorem 5. Hom ,(M, M) is a division ring. If K is algebraically closed,
then Hom (M, M) =K.

Proof. Since M is irreducible, every endomorphism is either zero or
bijective and, in the latter case, it is a trivial verification to show that
inverses are also endomorphisms.

Let peHom (M, M) — {0}. Then ¢ has a minimal polynomial f(x) since
M is finite dimensional over K. If K is algebraically closed, we may write

76 =11 (x=a)

for some a;,...,a,€K. As (¢ — a;1) is either zero or invertible for each i,
it follows that ¢ = ;1 for some i.

We now investigate the structure of M further. Let A4,, denote the image
of A in Homyg(M,M). Then M is irreducible as an A,-module. Since
Homg(M, M) is completely reducible as an A-module, so is Ay, and A,
is isomorphic to a direct sum of copies of M. (See Exercise 8 of Section
3.) Now suppose that I is a proper two-sided ideal of 4,, Then Ay,
contains a minimal right ideal M, isomorphic to M as an A4,-module,
with InM,=0. So Myl = Myn1=0, and hence I =0 since A, acts
faithfully on M. Thus we have shown the following.

Lemma 6. A, is a simple K-algebra.

Now let D = Hom (M, M). Then M has the structure of a right D-module.
Identifying K with the scalar transformations, we see that K lies in the
centre of D and hence that Hom (M, M) € Hom (M, M).

Theorem 7 (Double centraliser lemma). Homy(M, M) = A,,.

Proof. Without loss, we may suppose that A = A,, and that M < 4. From
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the definition of D we know that A = Homp(M, M), so we need only
establish the reverse inclusion.

Let 6eHomp(M, M). For each meM, define a map 6, M-~ A by
x6,, = mx. As M is a right ideal of A, in fact 8, M — M; then 8,,€D since,
whenever ae A4 and xeM,

(xa)8,, = m(xa) = (mx)a = (x6,,)a.
Thus, if m,neM,
(mn)0 = (n0,,)0 = (n6)8,, = m(nb). “4.1)

Let ne M — {0}. Since A is simple and has an identity, An4 = A so that
we can write

1= anb, 4.2)

for suitable elements {a;, b;} in A. So, whenever me M, we obtain, using
(4.1) and (4.2), the formula

mf =3 ((ma))(nb,))0 = ) (ma)((nb)0) = my_ a;((nb)0).

Thus 8 acts via right multiplication by an element of A4; that is, #e A.

If we identify Homg(M, M) with the full matrix algebra .#,(K) where
n = dimg(M)and let L be an extension of K, we can see that Hom, (M, M%)
may be identified with L ®Homg(M, M). So we obtain the following.

Corollary 8. Suppose that Hom (M, M)= K. Then A,, = Homyg (M, M). If
L is an extension field of K, then (Ay)t=Hom,(M* M"Y and
Hom .. (MY, M*) = L.

We are now in a position to establish a criterion for absolute irreducibility.
This involves only the module M, and does not require a consideration
of extension fields.

Theorem 9. M affords an absolutely irreducible representation of A if and
only if Hom (M, M) =K.

Proof. Suppose that Hom (M, M) =K. If L is an extension field of K,
then in a natural sense Hom,(M* M%) 2(A4%)L 2(A4,)" so that, by
Corollary 8,
(AYp = Hom, (MY, M%),
So certainly M* is irreducible as an AX-module.
Conversely, suppose that Hom ,(M, M) # K. Let peHom (M, M) — K,
and let L be an extension field of K which contains a root 1 of the



